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Abstract. In this paper, we investigate the generalized Hyers-Ulam

stability of Jordan homomorphisms in Jordan Banach algebras for the

functional equation
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1. Introduction

A classical question in the theory of functional equations is that “when is it

true that a function which approximately satisfies a functional equation E must

be somehow close to an exact solution of E”. Such a problem was formulated by

Ulam [34] in 1940 and solved in the next year for the Cauchy functional equation
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by Hyers [14]. It gave rise to the stability theory for functional equations. The

result of Hyers was generalized by Aoki [3] for approximate additive functions

and by Th.M. Rassias [30] for approximate linear functions. The stability phe-

nomenon that was proved by Th.M. Rassias is called the Hyers-Ulam-Rassias

stability or the generalized Hyers-Ulam stability of functional equations. In

1994, a generalization of the Th.M. Rassias’ theorem was obtained by Gǎvruta

[12] as follows: Suppose that (G,+) is an abelian group and E is a Banach space

and that the so-called admissible control function ϕ : G×G → R satisfies

ϕ̃(x, y) :=

∞∑

n=0

2−nϕ(2nx, 2ny) < ∞

for all x, y ∈ G. If f : G → E is a mapping with

‖f(x+ y)− f(x)− f(y)‖ ≤ ϕ(x, y)

for all x, y ∈ G, then there exists a unique mapping T : G → E such that

T (x + y) = T (x) + T (y) and ‖f(x) − T (x)‖ ≤ ϕ̃(x, x) for all x, y ∈ G. If

moreover G is a real normed space and f(tx) is continuous in t for each fixed

x in G, then T is a linear function.

The stability problems of several functional equations have been extensively

investigated by a number of authors and there are many interesting results

concerning this problem (see [4]–[8], [10], [11], [13], [15], [17]–[29], [31]– [33]).
Recently, Eshaghi Gordji et al. [9] defined the following n-dimensional ad-

ditive functional equation

Df (x1, · · · , xn) : =
n
∑

k=2

k
∑

i1=2

k+1
∑

i2=i1+1

· · ·

n
∑

in−k+1=in−k+1

f







n
∑

i=1,i6=in
1
,··· ,in−k+1

xi −

n−k+1
∑

r=1

xir







+ f

(

n
∑

i=1

xi

)

− 2
n−1

f(x1) = 0, (1.1)

where n is an integer greater than 1, and investigated the functional equation

(1.1) in random normed spaces via fixed point method.

Note that a unital algebra A, endowed with the Jordan product x ◦ y =
1
2 (xy + yx) on A, is called a Jordan algebra. A C-linear mapping L of a

Jordan algebra A into a Jordan algebra B is called a Jordan homomorphism if

L(x ◦ y) = (L(x) ◦ L(y)) holds for all x, y ∈ A.

Throughout this paper, let A be a Jordan Banach algebra with norm ‖ · ‖

and unit e, and B a Jordan Banach algebra with norm ‖cdot‖.

In this paper, we prove the generalized Hyers-Ulam stability of Jordan ho-

momorphisms in Jordan Banach algebras for the functional equation (1.1).

2. Main results

We need the following lemma in the proof of our main theorem.

Lemma 2.1. ([9]) A mapping f : A → B with f(0) = 0 satisfies (1.1) if and

only if f : A → B is additive.
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Approximation of Jordan homomorphisms 41

We are going to prove the main result.

Theorem 2.2. Let h : A → B be a mapping with h(0) = 0 for which there

exists a function ϕ : An+2 → [0,∞) such that

ϕ̃(x1, · · ·xn, z, w) :=
∞∑

j=0

2−jϕ(2jx1, · · · 2
jxn, 2

jz, 2jw) < ∞, (2.1)

∥∥∥∥∥∥

n∑

k=2

k∑

i1=2

k+1∑

i2=i1+1

· · ·

n∑

in−k+1=in−k+1

h




n∑

i=1,i6=i1,··· ,in−k+1

µxi −

n−k+1∑

r=1

µxir





+µh

(
n∑

i=1

xi

)
− µ2n−1h(x1) + h(z ◦ w) − h(z) ◦ h(w)

∥∥∥∥∥ (2.2)

6 ϕ(x1, . . . xn, z, w)

for all µ ∈ T 1 := {λ ∈ C| |λ| = 1} and x1, . . . xn, z, w ∈ A. Then there exists a

unique Jordan homomorphism L : A → B such that

‖h(x)− L(x)‖ ≤
1

2n−1
ϕ̃(x, x, 0 . . . 0︸ ︷︷ ︸

n−times

) (2.3)

for all x ∈ A.

Proof. Let µ = 1. Using the relation

1 +
n−k∑

k=1

(
n− k

k

)
=

n−k∑

k=0

(
n− k

k

)
= 2n−k (2.4)

for all n > k and putting x1 = x2 = x and xi = z = w = 0 (i = 3, . . . , n) in

(2.2), we obtain
∥∥2n−2h(2x)− 2n−1h(x)

∥∥ ≤ ϕ(x, x, 0, . . . , 0︸ ︷︷ ︸
n−times

) (2.5)

for all x ∈ A. So ∥∥∥∥
h(2x)

2
− h(x)

∥∥∥∥ ≤
1

2n−1
ϕ(x, x, 0, . . . , 0︸ ︷︷ ︸

n−times

) (2.6)

for all x ∈ A. By induction on m, we can show that
∥∥∥∥
h(2mx)

2m
− h(x)

∥∥∥∥ ≤
1

2n−1

m−1∑

j=0

1

2j
ϕ(2jx, 2jx, 0, . . . , 0︸ ︷︷ ︸

n−times

) (2.7)

for all x ∈ A. It follows from (2.1) and (2.7) that the sequence
{

h(2mx)
2m

}
is a

Cauchy sequence for all x ∈ A. Since A is complete, the sequence
{

h(2mx)
2m

}

converges. Thus one can define the mapping L : A → B by

L(x) := lim
m→∞

h(2mx)

2m
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42 M. Eshaghi Gordji, N. Karimipour, C. Park

for all x ∈ A. Let z = w = 0 and µ = 1 in (2.2). By (2.1),

‖Df(x1, ..., xn)‖ = lim
j→∞

1

2j

∥∥Df

(
2jx1, ..., 2

jxn

)∥∥

≤ lim
j→∞

1

2j
ϕ
(
2jx1, ..., 2

jxn, 0, 0
)
= 0

for all x1, · · · , xn ∈ A. So Df(x1, · · · , xn) = 0. By Lemma 2.1, the mapping

L : A → B is additive. Moreover, passing the limit m → ∞ in (2.7), we get the

inequality (2.3).

Now, let L′ : A → B be another additive mapping satisfying (1.1) and (2.3).

Then

‖L(x)− L′(x)‖ =
1

2n
‖L(2nx)− L′(2nx)‖

≤
1

2m
(‖L(2nx)− h(2nx)‖ + ‖L′(2nx) − h(2nx)‖)

≤
2

2m2n−1
ϕ̃(2mx, 2mx, 0, . . . , 0︸ ︷︷ ︸

n−times

)

which tends to zero as m → ∞ for all x ∈ A. So we can conclude that L(x) =

L′(x) for all x ∈ A. This proves the uniqueness of L.

Let µ ∈ T
1. Set x1 = x and z = w = xi = 0 (i = 2, ..., n) in (2.2). Then by

(2.1), we get

‖2n−1h(µx)− 2n−1µh(x)‖ ≤ ϕ(x, 0, ..., 0, 0, 0) (2.8)

for all x ∈ A. So

‖2−m(h(2mµx)− µh(2mx))‖ ≤
2−m

2n−1
ϕ(2mx, 0, ..., 0, 0, 0)

for all x ∈ A. Since the right hand side of the above inequality tends to zero as

m → ∞, we have

L(µx) = lim
m→∞

h(2mµx)

2m
= lim

m→∞

µh(2mx)

2m
= µL(x) (2.9)

for all µ ∈ T1 and all x ∈ A.

Now let λ ∈ C(λ 6= 0) and M an integer greater than 4|λ|. Then |λ/M | <

1/4 < 1 − 2/3 = 1/3. By Theorem 1 of [16], there exist three elements

µ1, µ2, µ3 ∈ T1 such that 3 λ
M

= µ1+µ2+µ3. And L(x) = L
(
3 · 1

3x
)
= 3L

(
1
3x
)

for all x ∈ A. So L
(
1
3x
)
= 1

3L(x) for all x ∈ A. Thus by (2.9)

L(λx) =L

(
M

3
· 3

λ

M
x

)
= M · L

(
1

3
· 3

λ

M
x

)
=

M

3
L

(
3
λ

M
x

)

=
M

3
L(µ1x+ µ2x+ µ3x) =

M

3
(L(µ1x) + L(µ2x) + L(µ3x))

=
M

3
(µ1 + µ2 + µ3)L(x) =

M

3
· 3

λ

M
L(x) = λL(x)
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Approximation of Jordan homomorphisms 43

for all x ∈ A. Hence

L(ζx1 + ηx2) = L(ζx1) + L(ηx2) = ζL(x1) + ηL(x2)

for all ζ, η ∈ C (ζ, η 6= 0) and all x1, x2 ∈ A. And L(0x) = 0 = 0L(x) for all

x ∈ A.

So L : A → B is C-linear.

Let xi = 0 (i ≥ 0) in (2.2). Then we get

‖h(z ◦ w)− h(z) ◦ h(w)‖ ≤ ϕ(0, · · · , 0︸ ︷︷ ︸
n−times

, z, w)

for all z, w ∈ A. Since

1

22m
ϕ(0, · · · , 0︸ ︷︷ ︸

n−times

, 2mz, 2mw) ≤
1

2m
ϕ(0, · · · , 0︸ ︷︷ ︸

n−times

, 2mz, 2mw),

1

22m
‖h(2mz ◦ 2mw)− h(2mz) ◦ h(2mw)‖ ≤

1

22m
ϕ(0, . . . , 0︸ ︷︷ ︸

n−times

, z, w)

≤
1

2m
ϕ(0, . . . , 0︸ ︷︷ ︸

n−times

, z, w),

which tends to zero as m → ∞ for all z, w ∈ A. Hence

L(z ◦ w) = lim
m→∞

h
(
22m(z ◦ w)

)

22m

= lim
m→∞

h(2mz ◦ 2mw)

22m

= lim
m→∞

1

22m
(h(2mz) ◦ h(2mw))

= lim
m→∞

(
h(2mz)

2m
◦
h(2mw)

2m

)

= L(z) ◦ L(w)

for all z, w ∈ A. So the C-linear mapping L : A → B is a Jordan homomorphism

satisfying (2.3). �

Corollary 2.3. Let h : A → B be a mapping with h(0) = 0 for which there

exist constants ε ≥ 0 and p ∈ [0, 1) such that
∥∥∥∥∥∥

n∑

k=2

k∑

i1=2

k+1∑

i2=i1+1

· · ·
n∑

in−k+1=in−k+1

h




n∑

i=1,i6=i1,··· ,in−k+1

µxi −
n−k+1∑

r=1

µxir




+µh

(
n∑

i=1

xi

)
− µ2n−1h(x1) + h(z ◦ w)− h(z) ◦ h(w)

∥∥∥∥∥

≤ ε(‖x1‖
p + · · ·+ ‖xn‖

p + ‖z‖p + ‖w‖p)
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44 M. Eshaghi Gordji, N. Karimipour, C. Park

for all µ ∈ T1 and all x1, x2, ..., xn, z, w ∈ A. Then there exists a unique Jordan

homomorphism L : A → B such that

‖h(x)− L(x)‖ ≤
ε

2n(1 − 2p−1)
‖x‖p

for all x ∈ A.

Proof. Define ϕ(x1, · · ·xn, z, w) = ε(‖x1‖
p + · · ·+ ‖xn‖

p + ‖z‖p + ‖w‖p) and

apply Theorem 2.2. Then we get the desired result. �

Corollary 2.4. Suppose that h : A → B is mapping with h(0) = 0 satisfying

(2.2). If there exists a function ϕ : An+2 → [0,∞) such that

ϕ̃(x1, · · ·xn, z, w) :=
∞∑

j=0

2jϕ(2−jx1, · · · 2
−jxn, 2

−jz, 2−jw) < ∞

for all z, w, xi ∈ A (i = 1, ..., n), then there exists a unique Jordan homomor-

phism L : A → B such that

‖h(x)− L(x)‖ ≤
1

2n−1
ϕ̃(x, x, 0 . . . 0︸ ︷︷ ︸

n−times

)

for all x ∈ A.

Proof. By the same method as in the proof of Theorem 2.2, one can obtain

that

L(x) = lim
m→∞

h(2mx)

2m

for all x ∈ A.

The rest of the proof is similar to the proof of Theorem 2.2. �

Theorem 2.5. Let h : A → B be a mapping with h(0) = 0 for which there

exists a function

ϕ : An+2 → [0,∞) satisfying (2.1) such that

∥∥∥∥∥∥

n∑

k=2

k∑

i1=2

k+1∑

i2=i1+1

· · ·
n∑

in−k+1=in−k+1

h




∑

i=1,i6=i1,··· ,in−k+1

µxi −
n−k+1∑

r=1

µxir




+µh

(
n∑

i=1

xi

)
− µ2n−1h(x1) + h(z ◦ w) − h(z) ◦ h(w)

∥∥∥∥∥ (2.10)

6 ϕ(x1, · · ·xn, z, w)

for µ = 1, i and all x1, · · · , xn, z, w ∈ A. If h(tx) is continuous in t ∈ R for

each fixed x ∈ A, then there exists a unique Jordan homomorphism L : A → B

satisfying (2.3).
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Proof. Put z = w = 0 in (2.10). By the same reasoning as in the proof of

Theorem 2.2, there exists a unique additive mapping L : A → B satisfying

(2.3). The additive mapping L : A → B is given by

L(x) = lim
m→∞

h(2mx)

2m

for all x ∈ A. By the same reasoning as in the proof of Theorem 2.2 the additive

mapping L : A → B is R-linear.

Putting xi = z = w = 0 (i = 2, · · · , n) and µ = i in (2.10), we get

‖h(ix)− ih(x)‖ ≤ ϕ(x, 0, · · · , 0︸ ︷︷ ︸
(n+1)−times

)

for all x ∈ A. So

1

2n
‖h(2mix)− ih(2mx)‖ ≤

1

2n
ϕ(2nx, 0, . . . , 0︸ ︷︷ ︸

(n+1)−times

),

which tends to zero as m → ∞. Hence

L(ix) = lim
m→∞

h(2mix)

2m
= lim

m→∞

ih(2mx)

2m
= iL(x)

for all x ∈ A.

For each element λ ∈ C, λ = s+ it, where s, t ∈ R. So

L(λx) = L(sx+ itx) = sL(x)+ tL(ix) = sL(x)+ itL(x) = (s+ it)L(x) = λL(x)

for all x ∈ A. So

L(ζx1 + ηx2) = L(ζx1) + L(ηx2) = ζL(x1) + ηL(x2)

for all ζ, η ∈ C, and all x1, x2 ∈ A. Hence the additive mapping L : A → B is

C-linear.

The rest of the proof is the same as in the proof of Theorem 2.2. �

Corollary 2.6. Let h : A → B be a mapping with h(0) = 0 for which there

exist constants ε ≥ 0 and p > 1 such that
∥∥∥∥∥∥

n∑

k=2

k∑

i1=2

k+1∑

i2=i1+1

· · ·

n∑

in−k+1=in−k+1

h




n∑

i=1,i6=i1,··· ,in−k+1

µxi −

n−k+1∑

r=1

µxir




+µh

(
n∑

i=1

xi

)
− µ2n−1h(x1) + h(z ◦ w)− (h(z) ◦ h(w))

∥∥∥∥∥

≤ ε(‖x1‖
p + . . .+ ‖xn‖

p + ‖z‖p + ‖w‖p)

for all z, w, xi ∈ A (i = 1, 2, · · · , n) and all µ ∈ T1. Then there exists a unique

Jordan homomorphism L : A → B such that

‖h(x)− L(x)‖ ≤
ε

2n(21−p − 1)
‖x‖p

for all x ∈ A.
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46 M. Eshaghi Gordji, N. Karimipour, C. Park

Proof. Define ϕ(x1, · · ·xn, z, w) = ε(‖x1‖
p + · · ·+ ‖xn‖

p + ‖z‖p + ‖w‖p) and

apply Theorem 2.2. Then we get the desired result. �
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